Pondicherry University MCA Syllabus

Mathematical Foundation Of Computer Science Syllabus:

UNIT-	Mathematical Logic : Connectives Negation, Conjunction, disjunction, Statement
I	Formulas and TT, Conditional and Biconditional, Well formed formulas, tautologies,
	Equivalence of statement formulae, Duality law, Tautological implications,
	Functionally complete set of connectives; Normal Forms Disjunctive, Conjunctive,
	Principal disjunctive and principal conjunctive normal forms.
UNIT-	The theory of inference for statement calculus, Validity using TT, rules of inference,
II	consistency of premises and indirect method of proof, Automatic Theorem proving-
	Predicate Calculus, Predicates, the statement function, variables and quantifiers.
UNIT-	Set Theory: Basic Concepts of Set theory, Notation, Inclusion and equality, Power set,
III	Operations on sets, Set identities, Ordered pairs and n-tuples, Cartesian products -
	Relations and Ordering, Relations, Properties of binary relation-relation matrix and
	graph of a relation, partition and covering of a set, equivalence relations, composition
	of binary relations, partial ordering, partially ordered set - Functions, Definition,
	composition, Inverse, Binary and n-ary operations, characteristic function of a set,
	hashing function- Recursions, Functions, sets and predicates.
UNIT-	Lattices and Boolean Algebra: Lattices as partially ordered sets, properties of lattices,
IV	Lattices as Algebraic systems, Some special lattices - Boolean algebra, functions,
	representation and minimization.
UNIT-	Graph theory: Definition, Examples, Paths and Cycles, Planarity, colouring graphs
V	

Computer Organisation And Assembly Language Programming Syllabus:

<u>UNIT I</u>

Digital logic fundamentals: Number systems Boolean algebra gates simplification of Boolean expressions combinational logic:adderssubtractors Decoders encoders multiplexer / demultiplexers Sequential Logic: Flip-flops - Counters.

<u>UNIT II</u>

Introduction to Intel s 8086/88: Register model Bus interface Unit Execution unit Control Unit: hardwired and micro programmed control. Memory organization: Basic memory cell RAM, ROM and DRAM associative, cache and virtual memory organizations.

UNIT III

Assembly Language Programming: Instruction formats addressing modes Intel 8086/88 instruction mnemonics timing data transfer arithmetic and machine control instructions - Introduction to Macro assembler.

UNIT IV

Input/Output organization: Input interface Data transfer techniques: synchronous asynchronous Interrupt driven Intel 8086/88 interrupt organization types DMA I/O processors serial communication.

UNIT V

Processor organization: General register organization stacks organization. IBM PC architecture: Mother board display adapters add on cards power supply. Architectural overview of Pentium, P-II, P-III and P-4

Data Structures Syllabus:

UNIT-	Introduction, algorithmic notation, Space and Time analysis of an algorithm,
I	information and its storage representation, Representation and its manipulation of
	strings, Pattern Matching. Searching and sorting techniques.
UNIT-	• Arrays: Array representation, Array processing single and multi dimension
II	arrays Stacks: Stack Representations, stack operations
	• Queues: Definitions, Implementations of Queues, Circular queues, Application
	of Queues.
	 Linked lists: Singly, Doubly, Circular linked list
UNIT-	• Trees: nary Trees, Binary Search Trees, Building a Binary Search Tree, Tree
III	Traversal techniques.
	Graphs: Definitions, Undirected and Directed Graphs, Traversal, Minimum cost
	spanning tree, topological sorting.
UNIT-	Hash Table: Hash Functions, Collision Resolution Strategies, Hash Table
IV	Implementation.
	• Binary Search Trees: Binary Search Tree (BST), Insertion and Deletion in BST,
	Complexity of Search Algorithm, Path Length, AVL Trees, B-trees.
UNIT-	File Structures: Physical Storage Media File Organization, Organization of records into
V	Blocks, Sequential Files, Indexing, Primary indices, Secondary indices, B+ Tree index
	Files, B Tree index Files, Indexing and Hashing Comparisons.

Problem Solving And Programming Syllabus:

UNIT I

Introduction to Problem Solving: Problem solving strategies, Problem identification, Problem understanding, Algorithm development, Solution planning (flowcharts, pseudo- code, etc.), Modular programming design. Basic program structure in C, Simple data types, variables, constants, operators, comments, Control Flow; if, while, for, do-while, switch.

<u>UNIT II</u>

Functions: Types, parameters, prototypes, recursion. Arrays & Pointers: Array usage, Pointers, addresses and types, call by reference, Pointer - array duality, Strings , Arrays of pointers, Arguments to main, Pointers to functions.

UNIT III

Structures: Member accessing, pointers to structures, Structures and functions, Arrays of structures, linked lists, trees. Other Data Types: Unions, enumerations and bit fields.

UNIT IV

Bitwise Operators: Usage, device accessing. Type manipulation: Coercion, typedef, initialisation, Static, global, external, register. Dynamic Allocation: Uses, pitfalls. The Pre-processor: Define, include, macro's, ifdef.

UNIT V

Input and Output: Concepts, Character and File I/O, Basic Curses, Simple File I/O, The Standard I/O Routines, ANSI Standard Libraries.

Pondicherry University Syllabus for Information Technology:

UNIT-	Introduction to IT, Scope for IT, IT Usage, Information System, its functions and applications.
UNIT- II	 Hardware: Architecture (Mainframe, Mini, PC, Workstations), Real time system, Transaction Processing system, Laptop, Palmtop, Client server, N-Tier. Introduction to Networks: LAN, WAN, MAN, etc. Peripherals: Information about Input devices (Keyboard, Mouse, Joystick, Track ball, etc.) - Details about Storage devices (Floppy disk, Hard disk, Tapes (Cartridge, DAT), Compact Disk), Information about Monitors, Printers (impact, non-impact) - Various types of plotters.
UNIT- III	 Software: Software Classification (System, Application, and Utilities). Operating System: Introduction, Basic functions of OS, Classification of OS. Programming Languages: Generation of Languages and their uses. Packages: Spread sheets, DTP Tools, Presentation tools. Application areas of Software - Commercial, Scientific, Real time application etc.
UNIT- IV	 Multimedia and Internet: Introduction to multimedia - Hardware, Software and applications - Introduction to Internet, Service providers, Internet naming and addressing - Information about electronic mail, Remote login, File Transfer, Usenet-BBS, HTML. Intranet, Extranet: Introduction to Intranet and Extranet.
UNIT- V	 Object Oriented System: Concepts, Benefits of OOS over conventional system. Enterprise Computing: About ERP, Activities under ERP.

Mobile Computing - An Introduction to Mobile Computing