

- (1) 2 amp.
- (2) 1 amp.
- (3) 0.5 amp. (4) 1.25 amp.
- 8. Which is correct for inside charged sphere:
 - (1) $E \neq 0$, V = 0

- (2) E=0, V=0 (3) E \neq 0, V \neq 0 (4) E=0, V = 0
- 9. The magnetic force experienced charge q in magnetic field moving with velocity V, will maximum when the angle between V and B is :
 - (1) 00
- $(2) 45^{\circ}$
- $(3) 90^{\circ}$
- (4) 180°
- 10. A parallel plate condenser is charged with a battery. After changing of the condenser battery is removed and two plates are separated from each other with the help of insulating handles, than:
 - (1) capacitance decreases
 - (2) capacitance increases
 - (3) charge on plates increases
 - (4) voltage between plates increase
- 11. The electrical flux from a semi spherical will be :

- $(1) \pi R^2 E$
- (2) $4\pi R^2 E$ (3) $2\pi R^2 E$
- $(4) 2\pi RE$
- 12. In closed organ pipe the produced harmonics are :
 - (1) no harmonics is produced
 - (2) even and odd both
 - (3) odd only
 - (4) even only
- 13. In this wave equation $Y = 5 \sin 2\pi (4t 0.02x)$ the wave velocity of wave is:
 - (1) 50 m/sec.
- (2) 150 m/sec.
- (3) 200 m/sec. (4) 100 m/sec.

14. Light velocity in (1) wavelength	vacuum depends up (2) frequency		(A) name of these
(1) wavelength	(2) frequency	(3) intensity	(4) none of these
	rent changes from 2A ent of self induction w		nd the induced enf is t
			11
(1) 8H (2,	0.02 H (3)	0.2 H (4) 0.8	н
16. The resistance o	f a galvanometer is 10	00 Ω and maximum	n current which can
pass through it 0	.001 A. The value of olt range will be :	shunt to change th	ils galvanometer into
(1) 12,100 Ω	(2) 11,900 Ω	(3) 1190 Ω	(4) 11,990 Ω
17. The AC voltage	is given by the equati	on $E = E_0 \sin \omega t$,	f an inductance is
connected in the	circuit the RMS valu	e of voltage in the	circuit will be:
(1) $E_{rms} = \underline{E}_0$			
(2) $E_{rms} = \underline{E_0}$			
(3) Erms = E_0	-		
(4) Erms = $\sqrt{2}$	E ₀		
\$ 36 mm m			
	nt phase difference be		d voltage is :
(1) $\pi/4$ (2)	$\pi/2$ (3) π	(4) zero	
		s 13.6 eV. The tota	al energy of an electro
in its third orbit		(1.7.	
(1) 3.4 eV (2)	- 3.4 eV (3)	1.5 eV (4) – 1	.5 eV
20. In radioactive di		nent shift by one p	lace further after the
(1) α-particle	(2) β-particle	(3) γ-particle	(4) α,β and γ a
(1) de pantiere	(2) p-partiere	(5) (-partiete	(4) osp and (4
	emitted electrons of 3		
			itted photons will be
(1) 3 eV (2)	4 eV (3) 5 eV	(4) 2 eV	
			10-34, the uncertainty
in the position of	electron will be of th	e order of :	
(1) 10 ⁻⁴ m (2)	10 ⁻⁸ m (3) 10 ⁻⁶ m	(4) 10 ⁻⁸ m	
23. Forbidden energ	v gap in Ge is :		
(1) 0.75 eV (2)	2.5 eV (3) 1.1 eV	(4) 5 eV	
24. A rod of length l	L and mass M is susp	ended from its one	end and execute
	ime period of vibratio		

(1)
$$T = 2\pi \sqrt{\frac{2L}{g}}$$

(2) $T = 2\pi \sqrt{\frac{L}{g}}$
(3) $T = 2\pi \sqrt{\frac{1L}{2g}}$

$$(4) T = 2\pi \quad \frac{\sqrt{2L}}{3g}$$

25. Two masses m₁ and m₂ are attached to the ends of a string by a weight loss rod of length r₀. The MI of this system about the axis passing through the center of mass and perpendicular to its length will be:

$$\begin{pmatrix} \mu \, 0 = & \underline{m_1 \, m_2} \\ m_1 + m_2 \end{pmatrix}$$

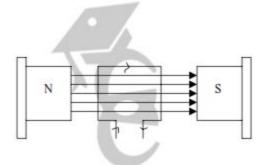
$$(1) \, \mu_0 r_0^2 \qquad (2) \, \mu_0 r \qquad (3) \, \mu_0 r^2 \quad (4) \, \mu_1 r_0^2$$

26. The energy of monatomic gas is:

- (1) only rotational (2) only vibrational (3) only translatory (4) all the above
- 27. The work done in increasing the size of a bubble by 10^{-2} m² (T = 25 dyne 1 cm.)
 - (1) 0.4 x 10⁻⁴ erg (2) 50 x 10² erg (3) 25 x 10² erg (4) 25 x 10⁻² erg
- 28. A geostationary satellite is at a distance of 8 Re revolving around the earth and another satellite is revolving round the earth at 3.5 Re distance, its revolution period will be:
 - (1) 8.5 hrs. 92) 16.5 hrs. (3) 18 hrs. (4) 12 hrs.
- 29. The work done per unit extension in length of a wire will be (L = length, A = area of cross section):
 - (1) $\frac{YL^2}{2A}$ (2) $\frac{YA}{2L^2}$ (3) $\frac{YA}{2L}$ (4) $\frac{YL}{2A}$
- 30. The total energy of a body at distance r from the earth will be :
 - $(1) \underline{Gm_em} \qquad (2) \underline{Gm_em} \qquad (3) \underline{Gm_em} \qquad (4) \underline{Gm_em} \qquad r$
- 31. The kinetic energy of a particle executing SHM is changed by frequency f, the frequency of its motion will be:

(1) mv	$(2) \frac{mv^2}{4g}$	$(3) \ \frac{\text{mv}^3}{4\sqrt{2g}}$	(4) <u>mv</u> 2
			s bob is life by ehight h and th
set free; the	work done in dis	placement of the	bob from one end to another y
	(2) <u>1 mgh</u> 2	(3) mgh	(4) zero
34. A boy is rev	volving on a dice w	ith spreading ha	nds. Suddenly the boy brings
	dy, the change in t		1:
	lar velocity increas		
	lar velocity decreas lar velocity unchan		
	lar momentum dec		
	A		
			s elastically with another body
			ly changes to 30 m/sec., the
velocity of t	the second body w	III be:	
velocity of t (1) 30 m/sec 36. The radius	the second body w c. (2) 60 m of a circular apert	ill be: /sec. (3) it ture is variable. 7	80 m/sec. (4) 50 m/sec. The light of λ wavelength is
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. V	the second body w (2) 60 m of a circular apert dent on the apert when one increases perture for which	ill be: /sec. (3) sture is variable. Ture a screen is play the radius of the	80 m/sec. (4) 50 m/sec.
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. W radius of ap screen will	the second body w (2) 60 m of a circular apert dent on the apert when one increases perture for which	ture is variable. Ture a screen is place the radius of the second time dark	80 m/sec. (4) 50 m/sec. The light of λ wavelength is laced at distance b from the experture, the value of the expoint will be obtained on the
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. We radius of apscreen will (1) √bλ 37. The length	the second body w (2) 60 m of a circular apertited on the apertity when one increases perture for which is be: (2) $\sqrt{3b\lambda}$ (3)	fill be: /sec. (3) is ture is variable. The second is plant in the radius of the second time dark in the second time dark i	80 m/sec. (4) 50 m/sec. The light of λ wavelength is laced at distance b from the experture, the value of the expoint will be obtained on the
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. We radius of apscreen will (1) √bλ 37. The length	the second body w. (2) 60 m of a circular apert dent on the apert when one increases perture for which the term (2) $\sqrt{3b\lambda}$ (2) of a sonometer with tension on sonome	fill be: /sec. (3) is ture is variable. The second is plant in the radius of the second time dark in the second time dark i	80 m/sec. (4) 50 m/sec. The light of λ wavelength is laced at distance b from the experture, the value of the expoint will be obtained on the $\sqrt{2nb\lambda}$. In T and frequency is n. If the bled the frequency will become
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. W radius of apscreen will (1) √bλ 37. The length length and (1) 2n 38. Two forks of figures. If t	the second body w (2) 60 m of a circular aperticle on the aperticle on the aperticle on the aperticle on the aperticle of a sonometer which is tension on sonometer with tension on sonometer with the circular of approximately of approximately of the Lissajous figure e tuning fork is 10	fill be: //sec. (3) is ture is variable. The results of the second time dark 3) $\sqrt{4b\lambda}$ (4) is re is τ and tension the radius of the second time dark are is τ and tension the relative are double the relation to the	80 m/sec. (4) 50 m/sec. The light of λ wavelength is laced at distance b from the experture, the value of the expoint will be obtained on the $\sqrt{2nb\lambda}$. In T and frequency is n. If the bled the frequency will become
velocity of t (1) 30 m/sec 36. The radius made to inc aperture. V radius of apscreen will (1) √bλ 37. The length length and (1) 2n 38. Two forks of figures. If t of one of th (1) 1000 Hz	the second body w (2) 60 m of a circular aperticle on the aperticle on the aperticle on the aperticle on the aperticle of a sonometer which is tension on sonometer with tension on sonometer with the circular of approximately of approximately of the Lissajous figure e tuning fork is 10	ture is variable. The second time dark is example as the radius of the second time dark is τ and tension ter wire are double example its shall on Hz, the frequencies is the radius of the second time dark is τ and tension ter wire are double example its shall on Hz, the frequencies is changes its shall on Hz, the frequencies is changes its shall on open pipe is:	80 m/sec. (4) 50 m/sec. The light of λ wavelength is faced at distance b from the experture, the value of the expoint will be obtained on the $\sqrt{2nb\lambda}$. In T and frequency is n. If the bled the frequency will become $\frac{n}{\sqrt{2}}$ are used to produce Lissajou per once in 1 sec. If the frequency of second fork will be:

(2) f


(1)1/2

(3) 2f

(4) 4f

40. If charge Q is placed at the center	of a	cube,	the e	mergent	flux	from	one	of	the
face of the cube will be:									

- (I) Q $2\varepsilon_0$
- (2) Q
- (3) Q
- 41. Two equal charges each of value q are placed on a straight line, another charge Q is placed at mid of the distance between the system will be most stable is :
- (3) + q
- (4) q
- 42. An electron passes through an electric field 3200 v/m. of length 0.1 m. with speed 4 x 10 m/sec. The deflection produced in the path of electron will be :
 - (1) 3.52 mm.
- (2) 1.35 mm. (3) 0.88 mm.
- 43. A rectangular coll placed in a magnetic field 0.25 T. The area of coll is 96 x 10-4 m2, no. of turns are 50 and current is 2A, the torque experienced by the coil will be:

- (1) 0.24 N-m.
- (2) 0.48 N-m.
- (3) 0.36 N-m. (4) 0.96 N-m.
- 44. If two charged conductors are short circuited by a wire, the current will now flow:
 - (1) sizes are equal
 - (2) capacitances are equal
 - (3) charges are equal
 - (4) potential are equal
- 45. Two coils X and Y are placed near to other according to the figure. If current is passed through X, the direction of induced current in Y will be:

- 77	- 7	75		
$\dashv\vdash$		P	Q	
(1) carit be de (3) Q to P	termined	(2) no curre (4) P to Q	nt induce	
46. Which quant (1) time period	ity doesn't re d (2) v	emains consta elocity (3) f	nt in simple ha	armonic motion : (4) amplitude
				of radius R, the ut of the pot will be :
(1) gR	(2) √2gR	(3) \sqrt{Rg}	(4) √5gr	
48. A spring is ex	tended by 1	length, then th	ne force is :	
(1) $F = \frac{k}{t}$	(2) I – KI	$(3)1 - \frac{k}{t^2}$	1	
49. The velocity of earth R _c =			e from the ear	th surface is (M _e = mass
(1) $V \le \sqrt{\frac{2GM_e}{R_e}}$	(2)	$V \ge \sqrt{\frac{2GM_g}{R_e}}$		
$(1) V \leq \sqrt{\frac{2GM_e}{R_e}}$ $(3) V \leq \sqrt{\frac{GM_e}{R_e}}$	_ (4) \	$V \ge \sqrt{\frac{GM_e}{R_e}}$		
1/9th of its ini	tial volume,	the final temp (3) 727°C	of the gas wi	ompressed adiabatically to
		ng a gas from	10 m³ to 20 m	³ at one atmospheric
pressure will (1) 10 ⁶ J	(2) 10^3 J	$(3) 10^2 J$	(4) 10 ⁵ J	
			e at a given te Helium (4) I	mp. will be max. for : Equal for all
53. Kind of bond (1) covalent	ing in H ₂ is : (2) v	ander waals	(3) ionic	(4) metallic
max, length o	f the wire w	10 ³ k/m ³ and t hich will unal	oreaking stress ble to break th	s is 7.9 x 10 ⁸ N/m2, the e wire from its own
weight will be (1) 10 ⁵ M	(2) 10 ³ M	(3) 10 ⁴ M	$(4) 10^2 M$	

same cross	sectional area	, the MI about	, disc and ring have same ma the axis shown by a point in	the figure
		-7/ 4.0	rpendicular to the plane of th	e bodies) :
←2r→	←2r→	←2r→	←2r→	
1	1 7			
2r	2r	2r	2r	
1	J ,	. —		
(1) only dis		phere and ring		
(3) disc and	cylinder (4) o	only ring		
56. A cylinder	rools down the	e inclined plan	e of length 0.15 m. If the mas	s of
		locity at the be	ttom of the inclined plane wi	ll be:
(1) 3.5 m/se	c. (2) 2	2 m/sec. (3)	.4 m/sec. (4) 2.4 m/sec	
57. A stopper i	s attached in t	he middle of g	lass tube. Two bubbles of rac	lius 2 cm.
			glass tube. If one opens the ste	
(1) smal	I bubble will re	educe and large	will increase	7.50
	will increase			
	will reduce			
(4) smal	l will increase	and large will	reduce	
58. A 500 μE ca	pacitor is cha	rged with a b	attery of 100 volt and it is disc	charged
through 10	Ω resistance t	he heat produ	ced in resistance will be:	ALCOHOL:
(1) 1.25 J	(2) 5 J	(3) 10 J	(4) 2.5 J	
59. Two conde	nsers of 1 µH a	re connected	n series with a battery of 6 ve	olt, the
	on condense			Negacine Company
(1) 2 μC		(3) 9 μC	(4) 4 μC	
60. Transform	er changes :			
(1) DC curre		OC voltage (3)	AC voltage (4) AC & DC vol	tage
61. Lenzis law	is based upon	:		
(1) law	of conservation	of energy		
(2) law	of conservation	of angular mo	mentum	
(3) law	of conservation	of momentum		
(4) law	of conservation	of charge		
62. Two thin w	ires are separ	ated by distan	ce r and parallel to each other	r. If the
			init length experienced by on	
	n the other wi			
(1) $\mu_0 I^2$	(2) $\mu_0 I^2$	(3) $\mu_0 I$	(4) $\mu_0 I^2$	
2πr2	4πr	2π	2πr	

63. The relation between current and maximum current Im at half power points in resonant circuit will be:

(1)
$$I = \underline{I}_{m}$$
 (2) $I = I_{m} \sqrt{2}$ (3) $I = \underline{I}_{m}$ (4) $I = \underline{I}_{m}$

$$(3) I = \underline{I}_{\underline{m}}$$

$$(4) I = \underline{I}_{\underline{m}}$$

64. In LCR circuit the voltage and current are given by the equations: E= E0 sin ωt and $I = I_0 (\omega t - \phi)$ than which statement is correct:

(1)
$$\cos \phi = \frac{R}{\left(\omega L - \frac{1}{C\omega}\right)}$$

(2)
$$\sin \phi = \left(\frac{\omega L - \frac{1}{C\omega}}{R}\right)$$

(3)
$$\tan \phi = \underbrace{\begin{array}{c} \omega L - \frac{1}{C\omega} \\ R \end{array}}$$

(4)
$$\tan \phi = \frac{\omega L}{R}$$

65. The potential due to electric dipole a point is :

$$(1)\,K\,\, \left(\begin{array}{ccc} \overrightarrow{p+r} & \overrightarrow{r} \\ \overrightarrow{r^3} & \end{array} \right) \qquad (2)\,K\,\, \left(\begin{array}{ccc} \overrightarrow{p+r} \\ \overrightarrow{p^1} & \end{array} \right)$$

$$(2) K \left(\begin{array}{c} \rightarrow \rightarrow \\ p + r \\ r^3 \end{array} \right)$$

$$(3) \ K \ \left(\begin{array}{c} \rightarrow & \rightarrow \\ \hline p - r \\ \hline r^3 \end{array} \right) \qquad (4) \ K \ \left(\begin{array}{c} \rightarrow & \rightarrow \\ \hline p \cdot & r \\ \hline r^3 \end{array} \right)$$

$$(4) K \left(\frac{p \cdot r}{r^3} \right)$$

- 66. The magnetic field due to a current carrying wire element will be maximum when the angle between the current element and position vector is :
- $(2) \pi / 4$
- $(3)\pi$
- (4) zero
- 67. A straight current carrying wire and loop are placed according to the figure. If the current is according to the figure:

(1) loop will mo	ve towards the wir	re	
(2) loop will mo	ve away from the	wire	
	te around the wire		
(4) no change			
.,,			
	produced in resi		.c. circuit is 250 watt per
		amp. (4) 1.25 a	imp.
69. The mean life of	a <u>radioactive</u> su	bstance is equal to	:
(1) 1 (2) √λ (3) j	<u>I</u> (4) λ	
VX		λ	
	a radioactive sub reduce is 150 day		The 25 gm. sample of this
(1) 0.375 gm.	(2) 0.75 gm.	(3) 1.5 gm. (4	4) 4 gm.
71. The wavelength	s associated with	photons and electr	ron are same, the ratio of
their momentum	will be:		
(1) 1 : 1	(2) 2 : 1	(3) 1 : 3 (4	1)1:3
72. Work function i	or a surface is ed	ual to :	
	energy - binding		
(2) ø =fremi			
	ng energy – fermi	energy	
$(4) \phi = bindi$			
(1) 4			
73. If the pressure of sound in the gas	f a gas is double becomes :	d at constant temp	erature, then the velocity o
(1) unchanged		(3) half	(4) double
(1) at some to (2) towards h	erature of black	body: ter side and others t	e wavelength λ _m shifted wit owards longer side
75. If the temp. of a	body is make an	nount of radiated e	nergy will become :
(1) 16 times	(2) half	(3) two times	(4) four times
76. If light ray is re in the reflected		denser medium, th	e path difference produced
	$\lambda/2$ (3) λ	(4) zero	
(1) 1/4 (2) NZ (3) A	(4) zero	

77. The one mole of a 1020 C the work	done in the proc	ess will be : (r = 1.5)	
(1) 1000.25 J	(2) - 1245 J		(4) -622.5 J
78. The absence of at	mosphere on the	surface of any plane	et is :
(1) V _{rms} is grea	ater than escape v	elocity	
(2) Average ki	netic energy gas i	molecules is negligible	to the gravitational force
on the plan			-
(3) V _{rms} less th	an escape velocit	v	
(4) None	•	*	
79. In a closed contai	ner the mass of	molecule is 3 x 10 ⁻²⁷ k	g. and velocity of
molecule is 10 m/	sec. If the no. of	molecules in the cont	ainer is 10 ²⁴ , the
pressure will be :			
(1) 100 N/m ²	(2) 10 N/m ²	(3) 1 N/m ²	(4) 0.5 N/m ²
80. The heat given a	system is Δ O an	d change in internal	energy of system is du
and if work done	is AW, the corre	ct relation between a	Il three quantities :
$(1) \Delta O = \Delta W - dU$	(2) dU=AO-/	$\Delta W = \Delta Q$	+dU (4) ΔW=ΔQ-dl
(.) 20	(2) 33 34	(3) 2 20	(1)211 223
81. Absorption coeffi	clant of an ideal	blackbady is r	
(1) less then 1	(2) 1	(3) zero (4) in	finity
(1) less tilen i	(2)	(3) 2010 (4) 111	imity
On The Verms of Con and	270 C to 37 on th	a some town the Von	ns of atomic oxygen is
	2/ Cis v on th	e same temp, the vri	ns of atomic oxygen is
V' than:	(2) 17 17	(2) 122 17	(1) 172 - 617
(1) $V = V$	(2) $V = V$	(3) $V' = \frac{V}{2}$	$(4) V = \sqrt{2} V$
2	N2	2	
		verted into vapour of	1000 C the external
work done in this			
(1) 2100 watt	(2) 2100 erg	(3) 2100 J	(4) 2100 cal
84. Of which the velo			
(1) cathode ray	(2) X-rays	(3) positive ray	(4) all
85. In young double	slit experiment t	he two coherent sour	ces are separated by 2
mm. the distance	of screen is 1m.	If the fringe width is	0.03 cm. the wavelengt
of light will be:			70
(1) 6000 Å	(2) 5890 Å	(3) 5000 Å	(4) 4000 Å
	ASTRONOUS SOL	CONTRACTOR OF THE PARTY OF THE	
86. The horns of two	cars emit the so	und of natural freque	ency 240 Hz. One of the
			sec. and the other car is
			. The no. of beat heard
by the observer w			. The no. of beat neard
97 The men wales	mornatic field	n a alastria field 2.2.	x 10 ⁻⁴ v/m (max. value)
(1) 0.94 x 10 ⁻¹⁴ T	(2) 0.94 x 10	in a electric field 3.2 m 10 T (3) 1.07 x 10	-12 T (4) 1.07x10 ⁻⁹ T
88. 1 amu is equal to			
oo, 1 amu is cqual to			

.

	(1) 931	MeV	(2)	931 eV	(3) 9	.30 eV	(4) 931	KeV		
89.	1 amp.	current	flow is a	circuit	when a c	elliscon	nected t	0 1 Ω re	sistance	and 0.5
	amp. to	a 3 Q re	esistance	. The in	ternal re	esistance	of cell	s:		
	(1) 2 Ω	(2	2) 1.0 Ω		(3) 1	.5 Ω		(4) 0.5	Ω	
90.	(1) t (2) t (3) t	on of a gr to increas to decrea to reduce None	se plate v	oltage voltage		1				
91.	If $r_p = 3$	x 10 ³ Ω	and g _m	= 20 m.	mho if ti	lode is t	used as a	ın ampli	ifler and	R _L = 6
	kΩ, the	n voltag	e amplif	ication i	s:					
	(1) 40	(2	2) 60	(3)	20	(4) 30)			
92.		bsolute t		: conduct	or	(2)	mi condi	ictor	(4) insula	itor
	(1) supe	r cond.	121			(5) se				
	(1) supe	r cond.	(2)	Conduct	W	(5) se	in condi			
	(1) supe	r cond.	(2)		NSWEI					
1.(4)	(1) supe 2.(4)	3.(4)	4.(4)		7			9.(3)	10.(1)	11.(1)
1.(4) 12.(3)				•	NSWEI	R SHEE	Т		100000000000000000000000000000000000000	11.(1) 22.(2)
	2.(4)	3.(4)	4.(4)	5.(3) A	NSWEI 6.(2)	7.(3)	8.(4) 19.(4)	9.(3)	21.(3)	
12.(3) 23.(1)	2.(4) 13.(3)	3.(4) 14.(4)	4.(4) 15.(3)	5.(3) 16.(2)	NSWEI 6.(2) 17.(2) 28.(2)	7.(3) 18.(2)	8.(4) 19.(4) 30.(2)	9.(3) 20.(2)	21.(3) 32.(3)	22.(2)
12.(3) 23.(1)	2.(4) 13.(3) 24.(4)	3.(4) 14.(4) 25.(3)	4.(4) 15.(3) 26.(3)	5.(3) 16.(2) 27.(2)	NSWEF 6.(2) 17.(2) 28.(2) 39.(1)	7.(3) 18.(2) 29.(1)	8.(4) 19.(4) 30.(2) 41.(4)	9.(3) 20.(2) 31.(1)	21.(3) 32.(3) 43.(1)	22.(2) 33.(4)
12.(3) 23.(1) 34.(1)	2.(4) 13.(3) 24.(4) 35.(3)	3.(4) 14.(4) 25.(3) 36.(3)	4.(4) 15.(3) 26.(3) 37.(4)	5.(3) 16.(2) 27.(2) 38.(4)	NSWEF 6.(2) 17.(2) 28.(2) 39.(1) 50.(2)	7.(3) 18.(2) 29.(1) 40.(3)	8.(4) 19.(4) 30.(2) 41.(4)	9.(3) 20.(2) 31.(1) 42.(4)	21.(3) 32.(3) 43.(1) 54.(3)	22.(2) 33.(4) 44.(4)
12.(3) 23.(1) 34.(1) 45.(3) 56.(3)	2.(4) 13.(3) 24.(4) 35.(3) 46.(2)	3.(4) 14.(4) 25.(3) 36.(3) 47.(4)	4.(4) 15.(3) 26.(3) 37.(4) 48.(2)	5.(3) 16.(2) 27.(2) 38.(4) 49.(2)	NSWEF 6.(2) 17.(2) 28.(2) 39.(1) 50.(2)	7.(3) 18.(2) 29.(1) 40.(3) 51.(1)	8.(4) 19.(4) 30.(2) 41.(4) 52.(4) 63.(4)	9.(3) 20.(2) 31.(1) 42.(4) 53.(2)	21.(3) 32.(3) 43.(1) 54.(3) 65.(4)	22.(2) 33.(4) 44.(4) 55.(1)
12.(3) 23.(1) 34.(1) 45.(3)	2.(4) 13.(3) 24.(4) 35.(3) 46.(2) 57.(1)	3.(4) 14.(4) 25.(3) 36.(3) 47.(4) 58.(4)	4.(4) 15.(3) 26.(3) 37.(4) 48.(2) 59.(1)	5.(3) 16.(2) 27.(2) 38.(4) 49.(2) 60.(3)	NSWEE 6.(2) 17.(2) 28.(2) 39.(1) 50.(2) 61.(1)	7.(3) 18.(2) 29.(1) 40.(3) 51.(1) 62.(4)	8.(4) 19.(4) 30.(2) 41.(4) 52.(4) 63.(4)	9.(3) 20.(2) 31.(1) 42.(4) 53.(2) 64.(3)	21.(3) 32.(3) 43.(1) 54.(3) 65.(4)	22.(2) 33.(4) 44.(4) 55.(1) 66.(1)